KNOTTED1 Cofactors, BLH12 and BLH14, Regulate Internode Patterning and Vein Anastomosis in Maize.
نویسندگان
چکیده
Monocot stems lack the vascular cambium and instead have characteristic structures in which intercalary meristems generate internodes and veins remain separate and scattered. However, developmental processes of these unique structures have been poorly described. BELL1-like homeobox (BLH) transcription factors (TFs) are known to heterodimerize with KNOTTED1-like homeobox TFs to play crucial roles in shoot meristem maintenance, but their functions are elusive in monocots. We found that maize (Zea mays) BLH12 and BLH14 have redundant but important roles in stem development. BLH12/14 interact with KNOTTED1 (KN1) in vivo and accumulate in overlapping domains in shoot meristems, young stems, and provascular bundles. Similar to kn1 loss-of-function mutants, blh12 blh14 (blh12/14) double mutants fail to maintain axillary meristems. Unique to blh12/14 is an abnormal tassel branching and precocious internode differentiation that results in dwarfism and reduced veins in stems. Micro-computed tomography observation of vascular networks revealed that blh12/14 double mutants had reduced vein number due to fewer intermediate veins in leaves and precocious anastomosis in young stems. Based on these results, we propose two functions of BLH12/14 during stem development: (1) maintaining intercalary meristems that accumulate KN1 and prevent precocious internode differentiation and (2) preventing precocious anastomosis of provascular bundles in young stems to ensure the production of sufficient independent veins.
منابع مشابه
The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence.
Plant architecture results from the activity of the shoot apical meristem, which initiates leaves, internodes, and axillary meristems. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the shoot apical meristem and play important roles in plant architecture. KNOX proteins interact with BEL1-like (BELL) homeodomain proteins and together bind a target sequence with high af...
متن کاملDistal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection.
Maize (Zea mays) leaves provide a useful system to study how proximal/distal patterning is established because of the distinct tissues found in the distal blade and the proximal sheath. Several mutants disrupt this pattern, including the dominant knotted1-like homeobox (knox) mutants. knox genes encode homeodomain proteins of the TALE superclass of transcription factors. Class I knox genes are ...
متن کاملMaize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture.
Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including r...
متن کاملKNOX1 genes regulate lignin deposition and composition in monocots and dicots
Plant secondary cell walls are deposited mostly in vascular tissues such as xylem vessels, tracheids, and fibers. These cell walls are composed of a complex matrix of compounds including cellulose, hemicellulose, and lignin. Lignin functions primarily to maintain the structural and mechanical integrity of both the transport vessel and the entire plant itself. Since lignin has been identified as...
متن کاملThe interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize.
In Arabidopsis, SHOOT MERISTEMLESS (STM) and CLAVATA1 (CLV1) competitively regulate meristem homeostasis. Here, we explore the interaction of their maize homologs knotted1 (kn1) and thick tassel dwarf1 (td1). kn1 mutants form fewer lateral organs and td1 inflorescences are fasciated with additional floral organs. Double mutants show kn1 epistatic to td1 in seedling and ear development but dose-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2017